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Preface

Ecosystems are marvellous assemblages of individuals that grow, reproduce, interact
with one another, move about in space, and eventually die. Spatial ecology aims
to understand the role that individual movement, population interaction, and land-
scape characteristics play in generating the patterns of species distributions that we
observe in space and time. The seemingly most basic question is: what conditions
are necessary for a particular species to be present at a particular location? This
deceptively simple question is at the heart of modern conservation biology: how
do we design nature reserves to preserve a particular species? Its economic cousin,
which arises for example in fisheries, is the question: how much can we harvest, and
where, without jeopardizing the survival of that species and the others that depend
on it? And a planning perspective on the same question is: where should we place
infrastructure to minimize negative effects on ecosystems? These are all inherently
spatial questions. Whether a population persists in a given environment depends on
how individuals move about, use the available resources and avoid existing dangers.

Another striking example of spatial processes in ecology are biological invasions.
The spread of alien species can disrupt ecosystem function, diminish biodiversity,
and require massive investments in remediation measures. Human activities such as
travel or international trade facilitate the arrival of alien species and their spread
in new environments. Spatial ecology aims to provide theory to predict the speed
of spatial spread of a species from its various underlying reproductive and dispersal
mechanisms. In other situations, we would like to introduce certain species in new
habitats as biological control agents, and we need to predict and assess their spread
and efficiency. In a world of climate change, species will have to move and colonize
new territories to keep up with their preferred climatic conditions. Spatial ecology
aims to predict which species will be able to do so, and develop mitigation measures
for those who will not.

The sheer scope of these problems, their spatial and temporal extent, make math-
ematical models indispensable tools to answer some of the questions. Such models
provide fundamental insights about the processes at work; they serve to process the
increasingly growing amount of available data; and they allow to test management
strategies in simulations before implementation in the real world. My goal is to pro-
vide a mathematical framework to study and understand how individual dispersal
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characteristics and interactions within and between populations interact to generate
spatio-temporal patterns of population distribution and abundance. My particular
focus is on species with distinct growth and dispersal phases, which include many
plant, insect and bird species in temperate climates. I envision this book to be a
new opportunity for ecology and mathematics to meet and create synergies that
lead to deeper understanding of ecological phenomena and create better tools and
guidelines for management of ecosystems.

Mathematical models in the form of dynamical systems served ecological theory
well for over a century and, in turn, spurred the development of mathematical the-
ory. Ordinary differential equations for the growth of individual populations and for
population interactions in continuous time go back to Lotka and Volterra and are
now found in many textbooks of ecology as well as mathematics. The seminal work
by Fisher (1937) in population genetics and by Skellam (1951) in ecology began to
combine these population growth models with spatial movement of individuals, mod-
elled as random diffusion. The resulting reaction-diffusion equations have yielded
many deep insights into spatial phenomena in ecology as well as the mathematical
structure of infinite-dimensional dynamical systems (Cantrell and Cosner, 2003).

Dynamical systems models for populations in discrete generations rose to fame
with the discovery that simple density-dependent growth functions could generate
complex and chaotic dynamic behaviour (May, 1975). These discrete-time dynam-
ical systems are sometimes easier to formulate, typically easier to simulate, and
almost always more difficult to analyze than their continuous-time counterparts.
The two foundational works that combined discrete-generation population dynam-
ics with spatial dispersal of individuals are by Weinberger (1982) in genetics and by
Kot and Schaffer (1986) in ecology. After the discovery of the mathematical phe-
nomenon of ‘accelerating invasions’ (Kot et al., 1996), ecologists quickly embraced
these so-called integrodifference equations as their framework of choice to test models
against data for species invasions (Lewis et al., 2006). Meanwhile, mathematicians
took up the challenge to study the qualitative behaviour of these infinite-dimensional
recursions. This book provides the first comprehensive exposition and review of the
mathematical and ecological literature on integrodifference equations.

The Introduction serves as an overview of some of the fundamental questions
of spatial ecology, some recent challenges in the face of global change and human
disturbances, and their relation to current challenges in ecosystem management.
The first part of the book (Chapters 2-8) develops all aspects of the theory of
integrodifference equations from model derivation to basic mathematical analysis
and numerical implementation. The guiding principle is to explain every new aspect
with the simplest possible example and motivate the more general study with it.
Chapter 2 carefully derives the basic model, discusses its assumption and limitations,
and summarizes some of the mathematical background required to proceed. Chapter
3 deals with the so-called ‘critical patch size’, the question of how much space a
population needs to persist. Chapter 4 looks at the steady-state problem and the
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spatial profile of the population distribution. Chapters 5-6 deal with spatial spread
and biological invasions in the absence and presence of an Allee effect. A typical
integrodifference equation contains only the outcome of the dispersal process, but
in many cases it is helpful and necessary to model the actual process itself (Chapter
7). Chapter 8 contains recipies and warnings about numerical implementations of
integrodifference equations.

In the second part of the book, I present many applications of the theory from
the first part to more realistic ecological problems. Including more realism often re-
quires minor modifications of the models and sometimes new theory to understand
their behaviour. In Chapters 9 and 10, I present various techniques for how to ap-
proximate population dynamics and spatial spread characteristics when only partial
information about dispersal is available. Chapter 11 examines the intricate shapes
that the fronts of invading species can take. Chapter 12 reviews many applications
of integrodifference equations to date, for example, to river ecosystems, to global
change scenarios, to Reid’s paradox and more.

The third part of the book contains extensions of the theory that represent the
current edge of the theory and its applications. Chapter 13 considers population
stage-structure and presents the most recent literature connecting models to data
for invasive species. Chapter 14 includes the interaction of two species and studies
phenomena such as spatial pattern formation. Chapters 15 and 16 deal with popu-
lation dynamics in spatially and temporarily (stochastically) varying environments.
The final chapter summarizes the most recent developments in various directions
and includes a review of connections of this theory to related approaches.

While the focus of this book is on the mathematical aspects, I include real
applications to ecological questions throughout – in fact, they serve as a constant
source of motivation and illustration of the mathematical approaches and results. I
strongly believe that the greatest progress is made where ecology and mathematics
come together to inspire each other towards deeper understanding in each discipline
and their interplay.
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